

Zero-Knowledge Proofs in Blockchains (Blokzincirlerde Sıfır Bilgi İspatları)

2. Uusal Blokzincir Çalıştayı, İstanbul, 2019 26 Eylül 2019

Dr. Muhammed Ali BİNGÖL

muhammedali.bingol@tubitak.gov.tr

Privacy against who?

Decentralized, no trusted server

Centralized: Reveal amount, sender/receiver info to the bank

De-centralized: Reveal amount, sender/receiver info to everyone

Transaction amounts available in the clear

Everyone can see the payer, payee, and <u>value</u>

Business implications:

•Company pays employees in Bitcoin.

⇒ all salaries are public

•Public supply chain prices:

•How much does Ford pay its supplier for tires?

Problem: Every transaction ever made is **recorded forever**

Difference Between

SALARIES

Anonymity vs Pseudnymity

ize			1110 (by	
ee Rate		0.001	16173243243243244 BTC pe	
eceived Time		Apr 10, 2017 12:38:00 Ai		
ined Time			Apr 10, 2017 12:38:00	
cluded in Block		00000000000000001f0115cca585646832b337404032c88539ce2995e799e		
C2561b292ed4878bb28478a8cafd1f99a01faeb9c5a90	6715fa595cac0e8d1d8 🕞	m	ined Apr 10, 2017 12:38:00 /	
c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a90 16k4365RzdeCPKGwJDNNBEkXj696MbChwx 0.:	6715fa595cac0e8d1d8 🕫	m 1JgVBpw5TDMTRoZXg9XpPDQRRHtNb5CsPA	ined Apr 10, 2017 12:38:00 / 0.01031593 BTC (U	
C2561b292ed4878bb28478a8cafd1f99a01faeb9c5a90 16k4365RzdeCPKGwJDNNBEkXj696MbChwx	6715fa595cac0e8d1d8 🕞	m 1JgVBpw5TDMTRoZXg9XpPDQRRHtNb5CsPA	ined Apr 10, 2017 12:38:0 0.01031593 BTC	
c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a900 16k4365RzdeCPKGwJDNNBEkXj696MbChwx 0.1 1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmREb7 1.4	6715fa595cac0e8d1d8 🕞 53333328 BTC	m 1JgVBpw5TDMTRoZXg9XpPDQRRHtNb5CsPA 1AFLhD4EtG2uZmFxmfdXCyGUNqCqD5887u	ined Apr 10, 2017 12:38:00 0.01031593 BTC (I 2 BTC (

Bitcoin only offers <u>pseudo-anonymity</u>. Transactions are linkable and can be potentially de-anonymized

Transaction Flow Graph [Maxwell 2016]

Pseudonymity cannot provide Anonymity!!

Typical Transaction Graph for a day

Transaction graph is still public

[Reid Martin 11] [Barber Boyen Shi Uzun 12] [Ron Shamir 12] [Ron Shamir 13][Meiklejohn Pomarole Jordan Levchenko McCoy Voelker Savage 13] [Ron Shamir 14]

Transaction Details

Blockchain	Bitcoin (\$
Туре	Transfer
Amount	94,504 BTC (\$1,018,147,900 USD)
Timestamp	2 weeks 6 days ago (Fri, 06 Sep 2019 03:30:05 UTC)
Hash	4410c8d14ff9f87ceeed1d65cb58e7c7b2422b2d7529afc675208ce2ce09ed7d View transaction in blockchain.info [↗
From	Unknown Multiple Addresses
То	Unknown 37XuVSEpWW4trkfmvWzegTHQt7BdktSKUs View address in blockchain.info 🗗

Transactions are public

Confidentiality and Anonymity

amounts

origins

Option 1: minting/burning, mixers/tumblers compatible with Bitcoin

Zero-Knowledge Proofs Sıfır Bilgi Ispatları

Zero-Knowledge Proofs [Goldwasser-Micali-Rackoff'85]

Every statement that has a classical proof (in NP) has zeroknowledge interactive proof, if **one-way functions** exists. [Goldreich-Micali-Wigderson'91]

 There exists a ZK proof system for the NP-complete graph colouring problem with three colours.

[1] Goldreich, Oded; Micali, Silvio; Wigderson, Avi (1991). "Proofs that yield nothing but their validity". *Journal of the ACM*. **38** (3): 690–728.

http://web.mit.edu/~ezyang/Public/graph/svg.html

Secure Computation vs. Communication

Secure Communication

- Symetric-Key Cryptography
 - Block Ciphers
 - Stream Ciphers
 - Hash Functions
- Public-Key Cryptography
 - Asymmetric Encryption
 - Signature Schemes
- Access Control
- Etc.

Secure Computation

- Secure Multi-party Computation
- Zero-Knowledge Protocols
 - Fiat-Shamir Protocol
 - Schnorr Proofs
 - Zk-Snarks
 - Zk-Starks
 - Bulletproofs
 - Sigma Bulletproofs etc.
- Private Function Evaluation
- Homomorphic Schemes
- Etc.

ZKPs ≠ privacy

ZKPs == honest computation

f(x) = y + proof

- There are four common statement types, though the following is not an exhaustive list:
 - An equality statement (the subject's bank account balance is equal to x), or non-equality statement.
 - An inequality statement (the subject's bank account balance exceeds x).
 - A range statement (the subject's bank account balance is within interval [a,b]), or out-of-range statement.
 - A membership statement (the subject is on the client list of bank X), or nonmembership statement.

Zero-Knowledge Protocols – Equality Proof Example

Verifier

Alice has two cups each containing $x \in [0, n)$ marbles.

She wants to prove to **Bob** that both contain the same number without revealing x.

Alice prepares 10 pairs of buckets, both buckets in the i^{th} pair containing a random number $R_i \in [0, N)$ of marbles.

Bob chooses one of the pairs at random, and inspects the other 9 pairs to ensure that each pair indeed contains an identical number of marbles.

Zero-Knowledge Protocols – Equality Proof Example

Alice has two cups each containing $x \in [0, n)$ marbles.

She wants to prove to Bob that both contain the same number without revealing x.

Alice prepares 10 pairs of buckets, both buckets in the i^{th} pair containing a random number $R_i \in [0, N)$ of marbles.

Zero-Knowledge Protocols – Example

Alice has two cups each containing $x \in [0, n)$ marbles.

She wants to prove to **Bob** that both contain the same number without revealing x.

Alice **pours the marbles** from the first cup to the first bucket, and from the second cup to the second bucket.

Alice has two cups each containing $x \in [0, n)$ marbles.

She wants to prove to Bob that both contain the same number without revealing x.

Alice has two cups each containing $x \in [0, n)$ marbles.

She wants to prove to Bob that both contain the same number without revealing x.

Alice pours the marbles from the first cup to the first bucket, and from the second cup to the second bucket.

Bob accepts the proof if both buckets contain the same number of marbles.

Soundness: If the cups contain a different number of marbles, Bob rejects with prob ≥ 0.9

Zero Knowledge: The number $x + R_i$ Bob sees is distributed n/N close to the uniform distribution on (0, N]. (Other 9 numbers are independent of X)

What is the success probability?

99,99..9%

Properties of ZKP

Completeness:

 if the statement is true, the honest verifier will be convinced of this fact by an honest prover.

Soundness:

 if the statement is false, no cheating prover can convince the honest verifier that it is true, except with some small probability.

Zero-knowledge:

 if the statement is true, no verifier learns anything other than the fact that the statement is true.

Formalized by showing that every verifier has some *simulator* that, given only the statement to be proved (and no access to the prover), can produce a transcript that "looks like" an interaction between the honest prover and the verifier in question.

Zero-Knowledge Proof Schemes

Classical Schnorr Proofs	 <u>C P Schnorr</u> [1989] Efficient identification and signatures for smart cards, Crypto '89
zk-SNARKS	 E Ben-Sasson, <u>A Chiesa</u>, <u>E Tromer</u>, <u>M Virza</u> [2014] Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture. <u>USENIX</u>'14
zk-STARKS	• E Ben-Sasson, <u>I Bentov</u> , <u>Y Horesh</u> , <u>M Riabzev</u> [2018] Scalable, transparent, and post-quantum secure computational integrity. e-print 2018/046
Bulletproofs	 <u>B Bünz</u>, <u>J Bootle</u>, <u>D Boneh</u> et al [2018] : Bulletproofs: Short Proofs for Confidential Transactions and More IEEE S&P'18.

Simple ZK proof - Schnorr's Protocol

Variant: Non-Interactive ZK (NIZK)

Confidential transaction in Monero

- The correctness (= balance) of the input and output amount is guaranteed by the additive homomorphic property of using Pedersen commitment.
- But we still need to ensure that for every transaction amount M:

 $0 \leq M < max$

→ We need a (compact) zero-knowledge range proof for all transaction amount M!

- They use inner product argument (Bulletproof)
 - Represent each amount M as a binary vector $(a_1, a_2, ..., a_n)$
 - showed in ZK that M = $(a_1, a_2, ..., a_n) \cdot (1, 2, 4, 8, ..., 2^{k-1})$
 - $\rightarrow 0 \le M < 2^k$

- > Example:
 - Alice and Bob must agree who will clean tonight
 - They are at their offices. Each tosses a coin & they call:
 - If tosses are the same, then Alice cleans
 - If tosses are different, then Bob cleans
 - Who talks first?

Alice and Bob toss

• Alice talks first

Bob says he tossed the same value

• Bob talks first

Alice says she tossed the opposite value

How can we avoid this?

Commitment: an envelope with a strange seal

- Alice talks first
- <u>Commit phase</u>: she hides toss in envelope, gives it to Bob
- Bob reveals toss
- <u>Reveal phase</u>: Alice tells Bob how to unseal envelope

- > Properties:
 - <u>Hiding</u>: The content of the envelope is not visible Bob doesn't know anything about Alice's toss
 - <u>Binding</u>: Alice can't change the content in the envelope Alice can't cheat after getting Bob's toss

Pedersen Commitments

Setup: $G_p^* = \langle g \rangle$, prime field, $h = g^s \in G_p^* \setminus \{1\}$, s unknown

➤ Commitment of input value $x \in \{0,1\}$:

- Choose random witness $w \leftarrow_R \{1, \dots, p-1\}$
- Compute $Commit(x, w) = g^w h^x = g^w g^{xs} = g^{w+xs}$
- <u>Binding</u>: Alice can't change the content in the envelope?
- <u>Hiding</u>: The content of the envelope is not visible ?

Info. Theoretical

Computational

Summary 1110 (bytes) Size Fee Rate 0.0016173243243243244 BTC per kB **Received Time** Apr 10, 2017 12:38:00 AM Mined Time Apr 10, 2017 12:38:00 AM Included in Block 00000000000000001f0115cca585646832b337404032c88539ce2995e799e5c Outputs positive? Sum of inputs≥Sum of outputs? **Details** C2561b292ed4878bb28478a8cafd1f99a01faeb9c5a906715fa595cac0e8d1d8 mined Apr 10, 2017 12:38:00 AM σ⁵³³h ≻ $g^{10}h^{r3}$ 16k4365RzdeCPKGwJDNNBEkXj696MbChwx 1JgVBpw5TDMTRoZXg9XpPDQRRHtNb5CsPA g¹⁴⁷⁸h 1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmREb7 1AFLhD4EtG2uZmFxmfdXCyGUNqCqD5887u FEE: 0.00179523 BTC **1 CONFIRMATIONS** Pedersen commitment: Commit(x;r)=g^xh^r

Ring Signatures

Bulletproofs

Use Bulletproofs for more efficient range proofs only and not for privacy directly

Proving that a number is within a range $v \in [0,2^n)$

Zero Knowledge about the Inner Product of Two Vectors

Any number can be represented as inner product of two vectors.

5 = **<**[**1**, **0**, **1**], [**2**², **2**¹, **2**⁰]**>**

5 equals inner product of 2 vectors [1, 0, 1] and $[2^2, 2^1, 2^0]$

This is also how binary works

 $101_{\text{binary}} = 5_{\text{decimal}} \text{ since } 1(2^2) + 0(2^1) + 1(2^0)$

Example: v = 5 and we wanted to prove that 5 is in range of 0 to 2^n <u>without showing 5</u>

v ∈ **[0,2**ⁿ**)**

Concrete Range Proof using bit commitments

$c_i = commit(b_i, r_i) \land x = \sum_{i=0}^{n-1} b_i * 2^i \land b_i \in [0, 1]$

$$x = (b_0, \dots, b_{n-1}), b_i \in [0,1]$$
$$r_i \leftarrow \mathbb{Z}_q \forall i \in [0, n-1]$$
$$c_i = commit(b_i; r_i) \forall i \in [0, n-1]$$

Research Directions

Full Scheme of the Bullutproofs

https://github.com/dalek-cryptography/bulletproofs

<u>B Bünz</u>, <u>J Bootle</u>, <u>D Boneh</u> et al [2018] : Bulletproofs: Short Proofs for Confidential Transactions and More IEEE S&P'18.

- Computation
- Algebraic Circuit
- R1CS (Rank-1 Constrant System)
- QAP (Quadratic arithmetic program)
- Linear PCP (probabilistically checkable proof)
- zk-SNARK

- Efficiency:
 - 288 byte proof per transactions (128-bit security)
 - <6 ms to verify a proof</p>
 - <1 min to create
 for 2⁶⁴ coins; asymptotically: log(#coins)
 - 896MB "system parameters" (fixed throughout system lifetime).
- Trust in initial generation of system parameters (once).
- Crypto assumptions:
 - Pairing-based elliptic-curve crypto
 - Less common: Knowledge of Exponent

[Boneh Boyen 04] [Gennaro 04] [Groth 10] ...

Properties of SHA256, encryption and signature schemes

Comparing Proof Systems (Oversimplified)

Proof System	Schnorr Σ-Protocol	Zk-SNARKs	STARKs	Bulletproofs
Proof Size	Long 🔇	Very Short	<mark>Shortish</mark>	Shortish
Prover	<mark>Linear</mark>	FFTs (memory req.)	FFT (Big memory req.)	Multiexp. 🔮
Verifier	Linear 🔀	Efficient	Efficient	Linear 🔇
Trusted Setup	No	Required 🔀	No	No
Practical	Yes	Yes	Not Quite	<mark>Yes</mark>
Assumptions	Dlog + RO	Pairing +KoE	RO	Dlog + RO
Quantum Resistancy	No	No	Yes 🕥	No

TEŞEKKÜRLER

Dr. Muhammed Ali BİNGÖL

TÜBİTAK BİLGEM National Research Institute of Electronics and Cryptology Blockchain Reseach Lab.

muhammedali.bingol@tubitak.gov.tr T: +90 262 648 1702