
Dealing with mutable data in
blockchain-based applications

Dr. Piergiovanni La SETA
Gökhan ÖNAL

Motivation

• The blockchain technology is a young technology with high potential for
data management.

• Several possible applications besides cryptocurrencies have been
proposed in the specialized literature

• One of the main characteristics of the blockchain technology is the
inherent security, what makes the recorded transactions to be resistant to
modifications

• The blockchain’s immutability may be however in contrast with certain
requirements, first of all the user’s privacy

• In this work, some approaches to deal with mutable data are discussed

Blockchain Structure
• A blockchain is referred to a

continuously growing list of
blocks

• The blocks of a blockchain are
linked and secured using
cryptography

• Recorded transactions can be
efficiently and quickly validated
but with very high effort modified
afterwards.

• A timestamp is included in the
block header. By implementing a
timestamp server, a timely order
in the block generation is
introduced.

Challenges

• The purpose of blockchain is to make the data stored in it immutable. This
is an advantage in many applications (money and stock transactions,
supply chain management, etc.)

• Due to its characteristics, the blockchain technology generates trust in
consumers even without a central authority

• It could be a preferred solution even in cases when some of the data to be
managed can be legitimately mutable

• An important category of data that can be legitimately mutable are
identity data

• Blockchain applications for identity management could be problematic
due to data protection regulatory aspects

Options to deal with mutable data (1/3)

• A first option could be to store all
data, immutable and mutable,
into a transaction

• As the user’s data is input for the
first time, a new transaction is
created, validated and included in
a block. After the block is mined,
the transaction data are secured.

• As the data related to the same
user is input for the second time
with some different values, the
new data “overwrites” the
original one.

• Provided that the transaction
signature is valid, this is perfectly
legitimate

Options to deal with mutable data (2/3)

• A second option is similar to option 1
but without redundancy of
unchanged data

• A second transaction (marked as a
change transaction) only stores the
values that have changed for a
specific user

• This solution still ensures traceability
but it requires less storage space as
option 1.

• In both solutions mentioned above,
no data is stored off-chain, and the
hash codes of all transactions are
calculated by using the whole data,
both immutable and mutable.

Options to deal with mutable data (3/3)

• When the data to be stored is
large, a possible solution is to
store some data (e.g. the mutable
part) off-chain

• As the transactions contain the
hash code of the stored data and
their position in the off-chain
storage, the block validity is kept

• The off-chain approach has
advantages with regard to the
storage space but adds
complexity

Conclusions

• The potential use of the blockchain technology in some fields (such as
digital identity management) implies dealing with data mutability

• This paper does not focus on removing immutability. Instead, some
approaches to overcome immutability have been discussed.

• Three approaches have been shown, each with its own limitations, though
among others off-chain techniques seem to be the most promising

• In our opinion, the management of digital data requires dedicated
blockchain solutions providing additional functionalities besides the
typical blockchain features

Thank you!

@onal_gokhan

@PiergiovanniLaS

goekhan@leanpowersolutions.com

piergiovanni.laseta@gmail.com

www.lpschain.com

	Dealing with mutable data in blockchain-based applications
	Motivation
	Blockchain Structure
	Challenges
	Options to deal with mutable data (1/3)
	Options to deal with mutable data (2/3)
	Options to deal with mutable data (3/3)
	Conclusions
	Thank you!

